
ABSTRACT

A

Major Project Report

On

GENERATING CLOUD MONITORS FROMMODELS
TO SECURE CLOUD

(Submitted in partial fulfillment of the requirements for the award of Degree)

BACHELOR OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING

By

D.MOUNIKA(18C21A0507)

S.SAI KIRAN (187R5A0512)

M.SAI KUMAR GOUD(187R5A0502)

Under the Guidance of
DR.G.MADHUKAR

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CMR TECHNICAL CAMPUS

UGC AUTONOMOUS
(Accredited by NAAC, NBA, Permanently Affiliated to JNTUH, Approved by AICTE, New Delhi)

Recognized Under Section 2(f) & 12(B) of the UGC Act.1956, NIRF Rank Band 201-250

Kandlakoya (V), Medchal Road, Hyderabad-501401.

2018-2022

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE
This is to certify that the project entitled “GENERATING CLOUD MONITORS FROM

MODELS TO SECURE CLOUD” being submitted by D.Mounika(18C21A0507), M.Sai

Kumar Goud (187R5A0502), S.Sai Kiran(187R5A0512) in partial fulfillment of the

requirements for the award of the degree of Btech in Computer Science and Engineering of

the Jawaharlal nehru technological University Hyderabad, during the year 2021-2022.

The results embodied in this thesis have not submitted to any other University or institute for

the award of any degree or diploma.

DR. G. MADHUKAR
(Associate Professor, PH.D)

INTERNAL GUIDE DIRECTOR

Dr. A. Raji Reddy
DIRECTOR

Dr. K. Srujan Raju

HOD

Submitted on viva voce Examination held on

EXTERNAL
EXAMINER

ACKNOWLEDGEMENT

Apart from the efforts of us, the success of any project depends largely on the
encouragement and guidelines of many others. We take this opportunity to express our
gratitude to the people who have been instrumental in the successful completion of this
project. We take this opportunity to express my profound gratitude and deep regard to
myguide

DR. G.Madhukar , Assistant. Professor,ph.d for her exemplary guidance, monitoring
and constant encouragement throughout the project work. The blessing, help and guidance
given by him shall carry us a long way in the journey of life on which we are about to embark.
We also take this opportunity to express a deep sense of gratitude to Project Review
Committee (PRC) Dr. M. Varaprasad Rao, Mr. J. Narasimha Rao, Dr. T. S. Mastan Rao,
Dr. Suwarna Gothane, Mr. A. Uday Kiran, Mr. A. Kiran Kumar, Mrs. G. Latha,
fortheir cordial support, valuable information and guidance, which helped us in completing
this task through various stages.

We are also thankful to the Head of the Department Dr. K. Srujan Raju for
providing excellent infrastructure and a nice atmosphere for completing this project
successfully.

We are obliged to our Director Dr. A. Raji Reddy for being cooperative throughout
the course of this project. We would like to express our sincere gratitude to our Chairman Sri.
Ch. Gopal Reddy for his encouragement throughout the course of thisproject

The guidance and support received from all the members of CMR TECHNICAL
CAMPUS who contributed and who are contributing to this project, was vital for the success
of the project. We are grateful for their constant support and help.

Finally, we would like to take this opportunity to thank our family for their constant
encouragement without which this assignment would not be possible. We sincerely
acknowledge and thank all those who gave support directly and indirectly in completion of
this project.

D.Mounika (18C21A0507)

M.Sai Kumar Goud (187R5A0502)

S.SaiKiran(187R5A0512)

I

ABSTRACT

Authorization is an important security concern in cloud computing environments. It aims at

regulating an access of the users to system resources. A large number of resources associated with

REST APIs typical in cloud makes an implementation of security requirements challenging and error-

prone. To alleviate this problem, in this paper we propose an implementation of security cloud

monitor. We rely on model-driven approach to represent the functional and security requirements.

Models are then used to generate cloud monitors. The cloud monitors contain contracts used to

automatically verify the implementation. We use Django web framework to implement cloud monitor

and OpenStack to validate our implementation.

We present a cloud monitoring framework that supports a semi-automated approach to monitoring a

private cloud implementation with respect to its conformance to the functional requirements and API

access control policy. Our work uses UML (Unified Modeling Language) models with OCL (Object

Constraint Language) to specify the behavioral interface with security constraints for the cloud

implementation.

The behavioral interface of the REST API provides an information regarding the methods that can be

invoked on it and pre- and post-conditions of the methods. In the current practice, the pre- and post-

conditions are usually given as the textual descriptions associated with the API methods. In our work,

we rely on the Design by Contract (DBC) framework, which allows us to define security and

functional requirements as verifiable contracts.

LIST OF FIGURES/TABLES

II

FIGURE NO FIGURE NAME PAGE NO

Figure 3.1 Project Architecture 10

Figure 3.2 Data flow diagram 12

Figure 3.3 Use case diagram 14

Figure 3.4 Class diagram 16

Figure 3.5 Sequence diagram 17

Figure 3.6 Activity diagram 18

LIST OF SCREENSHOTS

III

SCREENSHOT NO. SCREENSHOT NAME PAGE NO

Screenshot 5.1 Index page 50

Screenshot 5.2 User login 50

Screenshot 5.3 User registration 51

Screenshot 5.4 Admin login 51

Screenshot 5.5 Admin home page 52

Screenshot 5.6 Admin approves user 52

Screenshot 5.7 User app creation 53

Screenshot 5.8 Django rest 53

Screenshot 5.9 Cloud login 54

Screenshot 5.10 Cloud approve app 55
Screenshot 5.11 User upload file 55
Screenshot 5.12 Edit File 66

TABLE OF CONTENTS

ABSTRACT I

LIST OF FIGURES II

LIST OF SCREENSHOTS III

1. INTRODUCTION 1

1.1 PROJECT SCOPE 2

1.2 PROJECT PURPOSE 2

1.3 PROJECT FEATURES 2

2. SYSTEM ANALYSIS 3

2.1 PROBLEM DEFINITION 4

2.2 EXISTING SYSTEM 4

2.2.1 LIMITATIONS OF THE EXISTING SYSTEM 5

2.3 PROPOSED SYSTEM 5

2.3.1 ADVANTAGES OF PROPOSED
SYSTEM

5

2.4 FEASIBILITY STUDY 6

2.4.1 ECONOMIC FEASIBILITY 6

2.4.2 TECHNICAL FEASIBILITY 7

2.4.3 SOCIAL FEASIBILITY 7

2.5 HARDWARE & SOFTWARE REQUIREMENTS 7

2.5.1 HARDWARE REQUIREMENTS 7

2.5.2 SOFTWARE REQUIREMENTS 8

3. ARCHITECTURE 9

3.1 PROJECT ARCHITECTURE 10

3.2 DESCRIPTION 10

3.3 DATAFLOW DIAGRAM 11

3.4 USE CASE DIAGRAM 14

3.5 CLASS DIAGRAM 16

3.6 SEQUENCE DIAGRAM 17

3.7 ACTIVITY DIAGRAM 18

4. IMPLEMENTATION 19

4.1 SAMPLE CODE 20

5. SCREENSHOTS 49

6. TESTING 57

6.1 INTRODUCTION TO TESTING 58

6.2 TYPES OF TESTING 58

6.2.1 UNIT TESTING 58

6.2.2 INTEGRATION TESTING 58

6.2.3 FUNCTIONAL TESTING 59

6.3 TEST CASES 60

7. CONCLUSION & FUTURE SCOPE 61

8. REFERENCES 63

8.1 REFERENCES 64

9. JOURNAL 65

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 1

1. INTRODUCTION

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 2

1. INTRODUCTION

1.1 PROJECT SCOPE

This project is titled as “Generating cloud monitors from models to secure cloud”. This software

provides facility a cloud monitoring framework that supports a semi-automated approach to

monitoring a private cloud implementation with respect to its conformance to the functional

requirements and API access control policy. Our work uses UML (Unified Modeling Language)

models with OCL (Object Constraint Language) to specify the behavioral interface with security

constraints for the cloud implementation.

1.2 PROJECT PURPOSE

The idea proposed here,A quality output is one, which meets the requirements of the end user and

presents the information clearly. In any system results of processing are communicated to the

users and to other system through outputs. In output design it is determined how the information

is to be displaced for immediate need and also the hard copy output. It is the most important and

direct source information to the user. Efficient and intelligent output design improves the

system’s relationship to help user decision-making

1.3 PROJECT FEATURES

The main features of this project is it enables creating a (stateful) wrapper that emulates the usage

scenarios and defines security-enriched behavioral contracts to monitor cloud. This also allows

the security experts to observe the coverage of the security requirements during the testing phase.

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 3

2. SYSTEM ANALYSIS

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 4

2.SYSTEM ANALYSIS

SYSTEM ANALYSIS
System Analysis is the important phase in the system development process.

The System is studied to the minute details and analysed. The system analyst plays

an important role of an interrogator and dwells deep into the working of the present

system. In analysis, a detailed study of these operations performed by the system

and their relationships within and outside the system is done. A key question

considered here is, “what must be done to solve the problem?” The system is

viewed as a whole and the inputs to the system are identified.

Once analysis is completed the analyst has a firm understanding of what is

to be done.

2.1 PROBLEMDEFINITION

Authorization is an important security concern in cloud computing

environments. It aims at regulating an access of the users to system resources. A

large number of resources associated with REST APIs typical in cloud makes an

implementation of security requirements challenging and error-prone. To alleviate

this problem, in this paper we propose an implementation of security cloud monitor.

We rely on model-driven approach to represent the functional and security

requirements. Models are then used to generate cloud monitors. The cloud monitors

contain contracts used to automatically verify the implementation. We use Django

web framework to implement cloud monitor and OpenStack to validate our

implementation.

2.2 EXISTING SYSTEM

In many companies, private clouds are considered to be an important element of

data center transformations. Private clouds are dedicated cloud environments

created for the internal use by a single organization. Therefore, designing and

developing secure private cloud environments for such a large number of users

constitutes a major engineering challenge. Usually, cloud computing services offer

REST APIs (REpresentational State Transfer Application Programming Interface)

to their consumers. The REST architectural style exposes each piece of information

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 5

2.2.1 LIMITATIONS OF EXISTING SYSTEM

 Data breach and loss of critical data are among the top cloud security
threats.

 The large number of URIs further complicates the task of the security

experts, who should ensure that each URI, providing access to their

system, is safeguarded to avoid data breaches or privilege escalation

attacks.

 Since the source code of the Open Source clouds is often developed in

a collaborative manner, it is a subject of frequent updates. The updates

might introduce or remove a variety of features and hence, violate the

security properties of the previous releases.

2.3 PROPOSED SYSTEM
We present a cloud monitoring framework that supports a semi-automated

approach to monitoring a private cloud implementation with respect to its

conformance to the functional requirements and API access control policy. Our

work uses UML (Unified Modeling Language) models with OCL (Object

Constraint Language) to specify the behavioral interface with security constraints

for the cloud implementation. The behavioral interface of the REST API provides

an information regarding the methods that can be invoked on it and pre- and post-

conditions of the methods. In the current practice, the pre- and post-conditions are

usually given as the textual descriptions associated with the API methods. In our

work, we rely on the Design by Contract (DbC) framework, which allows us to

define security and functional requirements as verifiable contracts.

2.3.1 ADVANTAGES OF THE PROPOSED SYSTEM

 Our methodology enables creating a (stateful) wrapper that emulates the usage
scenarios and defines security-enriched behavioural contracts to monitor cloud.

 The proposed approach also facilitates the requirements traceability by

ensuring the propagation of the security specifications into the code. This also

allows the security experts to observe the coverage of the security

requirements during the testing phase.

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 6

 The approach is implemented as a semi-automatic code generation tool in
Django a Python web framework.

2.4 FEASIBILITY STUDY

The feasibility of the project is analysed in this phase and business proposal

is put forth with a very general plan for the project and some cost estimates. During

system analysis the feasibility study of the proposed system is to be carried out.

This is to ensure that the proposed system is not a burden to the company. Three

key considerations involved in the feasibility analysis are

• Economic Feasibility

• Technical Feasibility

• Social Feasibility

2.4.1 ECONOMIC FEASIBILITY

The developing system must be justified by cost and benefit. Criteria to

ensure that effort is concentrated on project, which will give best, return at the

earliest. One of the factors, which affect the development of a new system, is the

cost it would require.

The following are some of the important financial questions asked during

preliminary investigation:

• The costs conduct a full system investigation.

• The cost of the hardware and software.

• The benefits in the form of reduced costs or fewer costly errors.

Since the system is developed as part of project work, there is no manual

cost to spend for the proposed system. Also all the resources are already available,

it give an indication of the system is economically possible for development.

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 7

2.4.2 TECHNICAL FEASIBILITY

This study is carried out to check the technical feasibility, that is, the

technical requirements of the system. Any system developed must not have a high

demand on the available technical resources. The developed system must have a

modest requirement, as only minimal or null changes are required for

implementing this system.

2.4.3 BEHAVIOURAL FEASIBILITY
This includes the following questions:

• Is there sufficient support for the users?

• Will the proposed system cause harm?

The project would be beneficial because it satisfies the objectives when developed
and installed

2.5 HARDWARE & SOFTWARE REQUIREMENTS

2.5.1 HARDWARE REQUIREMENTS:
Hardware interfaces specifies the logical characteristics of each interface between

the software product and the hardware components of the system. The following are

some hardware requirements.

 Processor : i3 7th gen or higher RAM: 4 GBmin.

 Free Space on Hard Disk : minimum 40 GB.

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 8

2.5.2 SOFTWARE REQUIREMENTS:

Software Requirements specifies the logical characteristics of each interface and

software components of the system. The following are some software software

requirements:

• Operating system: Windows 7

• Language : Python, Debugger and Emulator Any Browser

(Particularly Chrome)

• IDE : Django

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 9

3. ARCHITECTURE

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 10

3.ARCHITECTURE

3.1 PROJECT ARCHITECTURE

This project architecture shows the procedure followed for Generating cloud monitors from

models to secure cloud

Fig no: 3.1

Fig: Project architecture of Generating cloud monitors from models to secure cloud

3.2 MODULE DESCRIPTION

User
It defines the access rights of the cloud users. A volume can be created, if the it has

not exceeded its quota of the permitted volumes and a user Authorization is an

important security concern in cloud computing environments. a POST request from

the authorized user on the volumes resource would create a new volume. a DELETE

request on the volume resource by an authorized user would delete the volume. if the

user of the service is authorized to do so, and the volume is not attached to any

instance. It aims at regulating an access of the users to system resources.

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 11

Cloud
The cloud monitors contain contracts used to automatically verify the

implementation. A cloud developer uses IaaS to develop a private cloud for her/his

organization that would be used by different cloud users within the organization. In

some cases, this private cloud may be implemented by a group of developers

working collaboratively on different machines. We use Django web framework to

implement cloud monitor and OpenStack to validate our implementation.

Admin
the cloud administrator using Keystone and users or usergroups are assigned the

roles in these projects. It defines the access rights of the cloud users in the project. A

volume can be created, if the project has not exceeded its quota of the permitted volumes

and a user is authorized to create a volume in the project. Similarly, a volume can be

deleted, if the user of the service is authorized to do so, and the volume is not attached to

any instance, i.e., its status is not in-u

3.3 DATA FLOWDIAGRAM

1. to represent a system in terms of input data to the system, various processing carried out

on this data, and the output data is generated by this system.

2. The data flow diagram (DFD) is one of the most important modeling tools. It is used to

model the system components. These components are the system process, the data used by the

process, an external entity that interacts with the system and the information flows in the system.

3. DFD shows how the information moves through the system and how it is modified by a

series of transformations. It is a graphical technique that depicts information flow and the

transformations that are applied as data moves from input to output. DFD is also known as bubble

chart. A DFD may be used to represent a system at any level of abstraction. DFD may be

partitioned into levels that represent increasing information flow and

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 12

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 13

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 14

3.4 USE CASE DIAGRAM:

A use case diagram in the Unified Modeling Language (UML) is a type of

behavioral diagram defined by and created from a Use-case analysis. Its purpose

is to present a graphical overview of the functionality provided by a system in

terms of actors, their goals (represented as use cases), and any dependencies

between those use cases. The main purpose of a use case diagram is to show what

system functions are performed for which actor. Roles of the actors in the system

can be depicted.

FIG NO: 3.4

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 15

FIG NO:3.4

FIG NO: 3.4

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 16

3.5 CLASS DIAGRAM:
In software engineering, a class diagram in the Unified Modeling

Language (UML) is a type of static structure diagram that describes the structure

of a system by showing the system's classes, their attributes, operations (or

methods), and the relationships among the classes. It explains which class contains

information.

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 17

3.6 SEQUENCE DIAGRAM:

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction

diagram that shows how processes operate with one another and in what order. It is a

construct of a Message Sequence Chart. Sequence diagrams are sometimes called event

diagrams, event scenarios, and timing diagrams.

Fig no: 3.6 Sequence Diagram

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 18

3.4 ACTIVITY DIAGRAM:

Activity diagrams are graphical representations of workflows of stepwise activities

and actions with support for choice, iteration and concurrency. In the Unified Modeling

Language, activity diagrams can be used to describe the business and operational step-

by-step workflows of components in a system. An activity diagram shows the overall

flow of control.

Fig no: 3.4 Use case Diagram

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 19

4. IMPLEMENTATION

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 20

4. IMPLEMENTATION

4.1 SAMPLE CODE

from django.contrib import admin

from django.urls import path from

django.conf import settings from

django.conf.urls.static import static from

users import views

from users.views import
index,userlogin,adminlogin,cloudlogin,userregister,storeregistration,logout,userlogincheck,us
ercreateapp,appcreaterequest,useruploadfile,snippet_detail
from admins.views import adminlogincheck,adminactivateusers,activatewaitedusers
from clouds.views import activateuserapp,cloudlogincheck,clouduserappactivations
from .views import resturl,downloadfile,deletefile,uploadfile

urlpatterns = [path('admin/', admin.site.urls),

path('',index,name='index'), path(r'accounts',

views.AccountAPIView.as_view(), name='account-list'), path(r'contacts',

views.ContactAPIView.as_view(), name='contact-list'), path(r'activities',

views.ActivityAPIView.as_view(), name='activity-list'),

path(r'activitystatuses', views.ActivityStatusAPIView.as_view(), name='activity-
statuslist'),

path(r'contactsources', views.ContactSourceAPIView.as_view(), name='contact-
sourcelist'),

path(r'contactstatuses', views.ContactStatusAPIView.as_view(),

name='contact-status-list'), path(r'logout',logout,name='logout'),

path(r'adminlogincheck',adminlogincheck,name='adminlogincheck'),

path(r'adminactivateusers',adminactivateusers,name='adminactivateusers'),

path(r'activatewaitedusers/<id>/$',activatewaitedusers,name='activatewaitedusers'),

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 21

path(r'userlogin',userlogin,name='userlogin'), path(r'adminlogin',

adminlogin, name='adminlogin'), path(r'cloudlogin', cloudlogin,

name='cloudlogin'), path(r'userregister', userregister, name='userregister'),

path(r'storeregistration',storeregistration,name='storeregistration'),

path(r'userlogincheck', userlogincheck, name='userlogincheck'),

path(r'usercreateapp',usercreateapp,name='usercreateapp'),

path(r'appcreaterequest',appcreaterequest,name='appcreaterequest'),

path(r'useruploadfile/<appname>/$',useruploadfile,name='useruploadfile'),

path(r'^snippet_detail/$',snippet_detail,name='snippet_detail'),

path(r'resturl/<id>',resturl,name='resturl'),

path(r'downloadfile/<id>',downloadfile,name='downloadfile'),

path(r'deletefile/<id>',deletefile,name='deletefile'),

path(r'uploadfile',uploadfile,name='uploadfile'),

path(r'activateuserapp',activateuserapp,name='activateuserapp'),

path(r'cloudlogincheck',cloudlogincheck,name='cloudlogincheck'),

path(r'clouduserappactivations/<appname>/$',clouduserappactivations,
name='clouduserappactivations'),

]

if settings.DEBUG:

urlpatterns+=static(settings.MEDIA_URL,document_root=settings.MEDIA_ROOT)

Cloud Side views.py

from django.shortcuts import render,HttpResponse

from rest_framework.views import APIView

from rest_framework.decorators import api_view

from rest_framework import generics

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 22

from users.models import UserFileModel import os

from django.conf import settings

from django.contrib import messages

from rest_framework import status

from rest_framework.response import Response import

os

from django.http import HttpResponse, Http404

from users.models import UserAppCreatModel

@api_view(['GET', 'PUT', 'DELETE','POST'])

def resturl(request,id):

role = request.session['role']

print('ROle is ',role) if

request.method == 'GET': if

role=='user':

dict = {}

data = UserFileModel.objects.get(id=id)

filepath = data.userfile

file = str(filepath).split("/")

rd=open(os.path.join(settings.MEDIA_ROOT+'/media/',

file[1]),'r',encoding='UTF-8',errors='ignore')

filedata = rd.read()

dict.update({'id':id,'filename':file[1],'seckey':data.secretkey,'fdata':filedata})

return render(request,'users/editfilesdata.html',dict) elif role=='admin':

print('Admin resturl works fine')

dict = {}

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 23

data = UserFileModel.objects.get(id=id)

filepath = data.userfile

file = str(filepath).split("/")

rd = open(os.path.join(settings.MEDIA_ROOT +
'/media/', file[1]), 'r', encoding='UTF-8', errors='ignore')

filedata = rd.read() dict.update({'id': id, 'filename': file[1], 'seckey':

data.secretkey, 'fdata': filedata}) return render(request,

'admin/admineditfilesdata.html', dict)

elif role=='cloud':

return Response(status=status.HTTP_405_METHOD_NOT_ALLOWED)

else:

print("Invalid URL")

elif request.method =='POST':

fileid = request.POST.get('fileid')

filename = request.POST.get('filename')

filedata = request.POST.get('filedata') with

open(settings.MEDIA_ROOT+'/media'

+'/'+filename, 'w+', encoding='UTF-8') as f:

f.write(filedata)

return

Response(status=status.HTTP_200_OK)

print('POST Request Executed') print('User ID

',role,'File ID ',id)

return HttpResponse('Am work fine')

def downloadfile(request,id):

data = UserFileModel.objects.get(id=id)

filepath = data.userfile

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 24

x1 = os.path.join(settings.MEDIA_ROOT+"//"+filepath)

print('X1 path = ',filepath)

fppath = str(filepath).split("/")

file_path = os.path.join(settings.MEDIA_ROOT+'/media/', fppath[1])

if os.path.exists(file_path):

with open(file_path, 'rb') as fh:

response = HttpResponse(fh.read(), content_type="application/vnd.ms-

excel") response['Content-Disposition'] = 'inline; filename=' +

os.path.basename(file_path)

return response

raise Http404

@api_view(('GET',))

def deletefile(request,id):

role =

request.session['role'] if role ==

'user':

data = UserFileModel.objects.get(id=id)

data.delete()

##filepath = data.userfile

#fpath = filepath #settings.MEDIA_ROOT+'/'+filepath

#print('Removing FIle path is ',fpath)

#os.remove(fpath) return

Response(status=status.HTTP_200_OK)

elif role =='admin':

return Response(status = status.HTTP_405_METHOD_NOT_ALLOWED)

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 25

elif role =='cloud': data =

UserFileModel.objects.get(id=id)

data.delete()

return Response(status = status.HTTP_200_OK)

@api_view(('GET',))

def uploadfile(request):

role = request.session['role']

if role =='user':

usremail = request.session['email'] dict =

UserAppCreatModel.objects.filter(email=usremail) return

render(request,'users/uploadfile.html',{'objects':dict}) elif role

=='admin':

return Response(status = status.HTTP_405_METHOD_NOT_ALLOWED)

elif role =='cloud':

return Response(status =

status.HTTP_405_METHOD_NOT_ALLOWED)

Cloud Side models.py

from django.shortcuts import render,HttpResponse

from django.contrib import messages

from users.models import UserAppCreatModel

import string

import random

Create your views here.

def cloudlogincheck(request): if

request.method == "POST": usid =

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 26

request.POST.get('name') pswd =

request.POST.get('password')

print("User ID is = ", usid) if usid

== 'cloud' and pswd == 'cloud':

request.session['role'] = 'cloud'

return render(request, 'clouds/cloudhome.html')

else:

messages.success(request, 'Invalid Login Details')

return render(request,'cloudlogin.html',{})

def activateuserapp(request):

dict = UserAppCreatModel.objects.all() return

render(request,'clouds/userappactivation.html',{'objects':dict})

def clouduserappactivations(request,appname):

accessKey = genAccessToken(10)

secretKey = genSecretKey(32) print('App Name = ', appname,' Access Key

',accessKey,' Secret Key ',secretKey)

UserAppCreatModel.objects.filter(appname=appname).update(accesskey=accessKey,sec

retk ey=secretKey) dict = UserAppCreatModel.objects.all() return render(request,

'clouds/userappactivation.html', {'objects': dict})

def genAccessToken(stringLength=10):

letters = string.ascii_lowercase return

''.join(random.choice(letters) for i in range(stringLength))

def genSecretKey(stringLength=32):

"""Generate a random string of letters and digits """ lettersAndDigits =
string.ascii_letters + string.digits return ''.join(random.choice(lettersAndDigits) for i
in range(stringLength))

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 27

User side Views.py from django.db

import models from django.contrib.auth.models

import User import os

INDCHOICES =

(('FINANCE',

'FINANCE'),

('HEALTHCARE', 'HEALTHCARE'),

('INSURANCE', 'INSURANCE'),

('LEGAL', 'LEGAL'),

('MANUFACTURING', 'MANUFACTURING'),

('PUBLISHING', 'PUBLISHING'),

('REAL ESTATE', 'REAL ESTATE'),

('SOFTWARE', 'SOFTWARE'),

)

class Account(models.Model):

name = models.CharField("Name of Account", "name",
max_length=64) email = models.EmailField(blank = True, null = True)
phone = models.CharField(max_length=20, blank = True, null = True)

industry = models.CharField("Industry Type", max_length=255,
choices=INDCHOICES, blank=True, null=True) website =
models.URLField("Website", blank=True, null=True)

description = models.TextField(blank=True, null=True)

createdBy = models.ForeignKey(User,
related_name='account_created_by', on_delete=models.CASCADE)

createdAt = models.DateTimeField("Created At",

auto_now_add=True) isActive = models.BooleanField(default=False)

def str (self): return self.name

class ContactSource(models.Model):

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 28

status = models.CharField("Contact Source", max_length=20)

def str (self):

return self.status class

ContactStatus(models.Model):

status = models.CharField("Contact Status", max_length=20)

def

return self.status

str (self):

class Contact(models.Model):

first_name = models.CharField("First name", max_length=255, blank =

True, null = True) last_name = models.CharField("Last name",

max_length=255, blank = True, null = True)

account = models.ForeignKey(Account,
related_name='lead_account_contacts', on_delete=models.CASCADE,
blank=True, null=True)

email = models.EmailField() phone =

models.CharField(max_length=20, blank = True, null = True) address =

models.TextField(blank=True, null=True) description =

models.TextField(blank=True, null=True)

createdBy = models.ForeignKey(User, related_name='contact_created_by',
on_delete=models.CASCADE)

createdAt = models.DateTimeField("Created At", auto_now_add=True)

isActive = models.BooleanField(default=False)

def str (self):

return self.first_name

class ActivityStatus(models.Model):

status = models.CharField("Activity Status", max_length=20)

def

return self.status

str (self):

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 29

class Activity(models.Model):

description = models.TextField(blank=True, null=True) createdAt =

models.DateTimeField("Created At", auto_now_add=True)

contact = models.ForeignKey(Contact, on_delete=models.CASCADE, null=True)

def str (self):

return self.description

class CloudUsersModel(models.Model):

id = models.AutoField(primary_key=True) name =

models.CharField(max_length=200) email =

models.CharField(max_length=100,unique=True) password =

models.CharField(max_length=100) mobile =

models.CharField(max_length=100) address =

models.TextField(max_length=100) city =

models.CharField(max_length=100) state =

models.CharField(max_length=100) status =

models.CharField(max_length=100,default='waiting')

def str (self): return

self.email

class Meta:

db_table = "registrations"

class UserAppCreatModel(models.Model): id =

models.AutoField(primary_key=True) name =

models.CharField(max_length=200) email =

models.CharField(max_length=200) appname =

models.CharField(max_length=200,unique=True) accesskey =

models.CharField(max_length=200,default='waiting') secretkey =

models.CharField(max_length=200,default='waiting')

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 30

def

str (self): return

self.appname class

Meta:

db_table = "userapps"

class UserFileModel(models.Model):

id = models.AutoField(primary_key=True) name =
models.CharField(max_length=200) email =
models.CharField(max_length=200) appname =
models.CharField(max_length=200) accesskey =
models.CharField(max_length=200) secretkey =
models.CharField(max_length=200) filename =
models.CharField(max_length=200) userfile =
models.FileField(upload_to='media/')

def str (self):

return

os.path.basename(self.userfile.name) class Meta:

db_table = "userfiles"

def delete(self, *args, **kwargs):

self.userfile.delete() super().delete(*args,

**kwargs)

forms.py

from django import forms from .models import

CloudUsersModel,UserFileModel class

CloudUserFrom(forms.ModelForm):

name = forms.CharField(widget=forms.TextInput(attrs={'size':50,'class':
'special'}), required=True,max_length=100)

email = forms.CharField(widget=forms.TextInput(attrs={'size':50}),
required=True, max_length=100)

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 31

password =
forms.CharField(widget=forms.PasswordInput(attrs={'size':50}),
required=True,max_length=100)

mobile = forms.CharField(widget=forms.TextInput(attrs={'size':50}),
required=True,max_length=100)

address = forms.CharField(widget=forms.Textarea(attrs={'rows':
3, 'cols': 52}), required=True,max_length=250)

city = forms.CharField(widget=forms.TextInput(attrs={'size':50}),
required=True,max_length=100)

state = forms.CharField(widget=forms.TextInput(attrs={'size':50}),

required=True,max_length=100) status = forms.CharField(widget=forms.HiddenInput(),

initial='waiting', max_length=100)

class Meta():

model = CloudUsersModel

fields=['name','email','password','mobile','address','city','state','status']

class UserFileForm(forms.ModelForm):

name = forms.CharField(max_length=100)

#email = forms.CharField(max_length=200)

#appname = forms.CharField(max_length=200)

#accesskey = forms.CharField(max_length=200)

#secretkey = forms.CharField(max_length=200)

#filename = forms.CharField(max_length=200)

#userfile =

forms.FileField() class Meta():

model = UserFileModel

fields = ' all '

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 32

admin.py

from django.contrib import admin

from users.models import

Contact,Account,ContactSource,ContactStatus,ActivityStatus,Activity,CloudU
sersModel,Use rFileModel

Register your models here.

admin.site.register(Contact)

admin.site.register(Account)

admin.site.register(ContactSource)

admin.site.register(ContactStatus)

admin.site.register(ActivityStatus)

admin.site.register(Activity)

admin.site.register(CloudUsersModel)

admin.site.register(UserFileModel) user side views.py

from django.shortcuts import

render,HttpResponseRedirect,HttpResponse from

rest_framework import generics import json

from .models import Account, Activity, ActivityStatus,
Contact, ContactSource, ContactStatus

from .serializers import AccountSerializer, ActivitySerializer, ActivityStatusSerializer,

ContactSerializer, ContactSourceSerializer, ContactStatusSerializer,UserFileModelSerializer

from rest_framework.decorators import api_view # Create your views here.

from rest_framework import

generics from django.http import

JsonResponse

from .models import Account, Activity, ActivityStatus, Contact,
ContactSource, ContactStatus

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 33

from .serializers import AccountSerializer, ActivitySerializer,
ActivityStatusSerializer, ContactSerializer, ContactSourceSerializer,
ContactStatusSerializer

from rest_framework.renderers import

TemplateHTMLRenderer from rest_framework.response import

Response from rest_framework.views import APIView from

rest_framework import serializers

from .forms import CloudUserFrom,UserFileForm from .models

import CloudUsersModel from django.contrib import messages from

rest_framework import status from .models import

CloudUsersModel,UserAppCreatModel,UserFileModel #@api_view(['GET',

'POST']) class AccountAPIView(generics.ListCreateAPIView):

queryset = Account.objects.all()

serializer_class = AccountSerializer

renderer_classes = [TemplateHTMLRenderer]

template_name = 'profile_list.html'

def get(self, request):

queryset = Account.objects.all()

return Response({'profiles': queryset})

def post(self, request, pk):

print('AM going to Execute atleast once in my life') profile =
get_object_or_404(Account, pk=pk) serializer = AccountSerializer(profile,
data=request.data)

if not serializer.is_valid():

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 34

return Response({'serializer': serializer, 'profile':

Account}) serializer.save() return redirect('account-list')

class ActivityAPIView(generics.ListCreateAPIView):

queryset = Activity.objects.all()

serializer_class = ActivitySerializer

class ActivityStatusAPIView(generics.ListCreateAPIView):

queryset = ActivityStatus.objects.all()

serializer_class = ActivitySerializer

class ContactAPIView(generics.ListCreateAPIView):

queryset = Contact.objects.all()

serializer_class = ContactSerializer

class ContactStatusAPIView(generics.ListCreateAPIView):

queryset = ContactStatus.objects.all()

serializer_class = ContactSerializer

class ContactSourceAPIView(generics.ListCreateAPIView):

queryset = ContactSource.objects.all()

serializer_class = ContactSourceSerializer

def index(request):

return

render(request,'base.html',{}) def

userlogin(request):

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 35

return

render(request,'userlogin.html',{}) def

adminlogin(request):

return

render(request,'adminlogin.html',{}) def

cloudlogin(request):

return

render(request,'cloudlogin.html',{}) def

userregister(request):

return render(request,'userregister.html',{})

@api_view(['GET', 'POST'])

def

storeregistration(request): if

request.method == 'POST':

form = CloudUserFrom(request.POST)

if form.is_valid():

try:

rslt = form.save() print("Form Result Status ",

rslt) messages.success(request, 'You have been successfully

registered')

except:

messages.success(request, 'Email Already Registerd')
return render(request, 'userregister.html',{})

else:

print("Invalid form") else:

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 36

form = CloudUserFrom() return

render(request, 'userregister.html', {'form': form})

def

userlogincheck(request): if

request.method == "POST":

email = request.POST.get('cf-

email') pswd = request.POST.get('cf-

password') print("Email = ", email)

try:

check = CloudUsersModel.objects.get(email=email, password=pswd)

request.session['id'] = check.id

request.session['loggeduser'] = check.name

request.session['email'] = check.email

request.session['role']='user' status = check.status if

status == "activated":

print("User id At", check.id, status)

return render(request, 'users/userpage.html', {})

else:

messages.success(request, 'Your Account Not at activated')

return render(request, 'userlogin.html')

return render(request,

'userlogin.html', {}) except: pass

messages.success(request, 'Invalid Email id and password') return
render(request, 'userlogin.html')

@api_view(['GET', 'PUT', 'DELETE','POST'])

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 37

def

snippet_detail(request): role

= request.session['role']

try:

snippet = UserFileModel.objects.all()

#print('Type is ',snippet.id)

except CloudUsersModel.DoesNotExist:

return
Response(status=status.HTTP_404_NOT_FOUND)

if request.method == 'GET':

if role == 'user':

print('Get Method Works Fine') usremail =

request.session['email'] queryset =

UserFileModel.objects.filter(email=usremail) serializer_class =

UserFileModelSerializer print('Return Type is ',serializer_class)

return render(request,'users/uploadedfiles.html',{'objects':queryset})

elif role=='admin':

queryset = UserFileModel.objects.all() serializer_class =

UserFileModelSerializer return render(request,

'admin/adminuploadedfiles.html', {'objects': queryset})

elif role =='cloud':

queryset = UserFileModel.objects.all() serializer_class =

UserFileModelSerializer return render(request,

'clouds/clouduploadedfiles.html', {'objects': queryset})

elif request.method == 'PUT':

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 38

print('PUT Method Works Fine') serializer =

UserFileModelSerializer(snippet, data=request.data)

if serializer.is_valid():

serializer.save()

return Response(serializer.data)

return Response(serializer.errors,

status=status.HTTP_400_BAD_REQUEST) elif request.method ==

'DELETE':

print('DELETE Method Works Fine')

#snippet.delete()

return Response(status=status.HTTP_204_NO_CONTENT)

elif request.method=="POST":

print('POST Method Works Fine') form

= UserFileForm(request.POST, request.FILES)

if form.is_valid():

form.save()

else:

print('Invalid Form')

return Response(status=status.HTTP_201_CREATED)

def logout(request):

request.session.modified = True

return render(request,'base.html',{})

def usercreateapp(request):

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 39

usremail = request.session['email'] dict =

UserAppCreatModel.objects.filter(email=usremail) return

render(request,'users/userappcreations.html',{'objects':dict})

def

appcreaterequest(request): if

request.method=='POST':

usrname = request.POST.get('usrname')

usremail = request.POST.get('usremail')

appname = request.POST.get('appname')

accesskey = request.POST.get('accesskey')

secretkey = request.POST.get('secretkey')

try:

UserAppCreatModel.objects.create(name=usrname,email=usremail,appname=appnam
e)

messages.success(request, 'Your App creation Request is Under Process')

except:

messages.success(request, 'App Name Already exist')

pass

print(usrname,usremail,appname,accesskey,secretkey) dict =
UserAppCreatModel.objects.filter(email=usremail return
render(request,'users/userappcreations.html',{'objects':dict})

def useruploadfile(request,appname):

check =

UserAppCreatModel.objects.get(appname=appname) acckey =

check.accesskey secretkey = check.secretkey dict =

{'appname':appname,'acckey':acckey,'secretkey':secretkey}

return render(request,'users/uploaddatatocloud.html',dict) admin.py

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 40

Create your views here. def

adminlogincheck(request): if

request.method == "POST": usid =

request.POST.get('name') pswd =

request.POST.get('password')

print("User ID is = ", usid)

if usid == 'admin' and pswd == 'admin':

request.session['role'] = 'admin' return render(request,
'admin/adminhome.html')

else:

messages.success(request, 'Invalid Login Details')

return render(request,'adminlogin.html',{})

def adminactivateusers(request):

dict = CloudUsersModel.objects.all() return

render(request,'admin/activateusers.html',{'objects':dict})

def

activatewaitedusers(request,id):

if request.method == 'GET':

#uid = request.GET.get('uid')

status = 'activated' print("PID

= ", id,status)

CloudUsersModel.objects.filt

er(id=id).update(status=statu

s) dict =

CloudUsersModel.objects.all

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 41

() return render(request,

'admin/activateusers.html',

{'objects': dict})

clouduploadfiles.html

{% extends 'clouds/cloudbase.html'%}

{% load static %}

{% block contents%}

<div id="qbootstrap-testimonial" class="qbootstrap-bg-section">

<div class="container">

<div class="row animate-box">

<h1>Cloud Server View Uploaded Files of Users</h1>

<p>

<tr style="color: darkblue">

<th>S.No</th>

<th>Name</th>

<th>Email</th>

<th>App Name</th>

<th>File Name</th>

<th>Server path</th>

<th>Edit</th>

<th>Delete</th>

<th>Download</th>

<th>Upload New</th>

</tr>

{% for i in objects %}

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 42

<tr style="color: RED">

<td>{{forloop.counter}}</td>

<td>{{i.name}}</td>

<td>{{i.email}}</td>

<td>{{i.appname}}</td>

<td>{{i.filename}}</td>

<td>{{i.userfile}}</td>

<td><a class="btn btn-primary btn-md"
href="{%url

</tr>

{% endfor %}

</table>

</p>

</div>

</div>

</div>

{% endblock %}

Cloudbase.html

{% extends 'clouds/cloudbase.html' %}

{% load static %}

{% block contents %}

<div id="qbootstrap-counter" class="qbootstrap-counters"
style="background-image: url({% static 'images/img_bg_2.jpg'%});" data-
stellar-background-ratio="0.5">

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 43

<div class="overlay"></div>

<div class="container">

<div class="row">

<div class="col-md-10 col-md-offset-1">

<div class="row">

<div class="col-md-3
col-sm-6 <i class="icongroup-

outline"></i>

<span class="qbootstrap-counter jscounter" data-from="0" data-
to="65535" data-speed="5000" data-refreshinterval="50">

Satisfied Customer

</div>

<div class="col-md-3
col-sm-6 text-center animate-box">

<i class="iconhome-outline"></i>

<span
class="qbootstrap-counter jscounter" data-from="0" data-

to="378" data-speed="5000" data-refreshinterval="50">

Cloud Hosts

</div>

<div class="col-md-3
col-sm-6 text-center animate-box">

<i class="icon-useradd-outline"></i>

<span
class="qbootstrap-counter jscounter" data-from="0" data-

to="400" data-speed="5000" data-refresh-
interval="50">

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 44

<span class="qbootstrap-counter-

label">Qualified
Professionals

animate-box">

point-of-interest-
outline"></i>

</div>

<div class="col-md-3 col-
sm-6 text-center

<i
class="icon-

<span class="qbootstrap-
counter js-

counter" data-from="0" data-to="30" data-speed="5000" data-
refresh-interval="50">

Nodes

</div>

</div>

</div>

</div>

</div>

</div>

{% endblock %}

Useruploadfile.html

{% extends 'users/userbase.html'%}

{% load static %}

{% block contents%}

<div id="qbootstrap-testimonial" class="qbootstrap-bg-section">

<div class="container">

<div class="row animate-box">

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 45

<p>

<h1>Created Apps and upload file</h1>

<table border="2px">

<tr style="color: darkblue">

<th>S.No</th>

<th>Name</th>

<th>Email</th>

<th>App Name</th>

<th>Access Key</th>

<th>Token Key</th>

<th>Upload Data</th>

</tr>

{% for i in objects %}

<tr style="color: RED">

<td>{{forloop.counter}}</td>

<td>{{i.name}}</td>

<td>{{i.email}}</td>

<td>{{i.appname}}</td>

<td>{{i.accesskey}}</td>

<td>{{i.secretkey}}</td>

{% if i.secretkey != 'waiting' %}

<td><a class="btn-link"
href="{% url 'useruploadfile' i.appname %}"

style="color:GREEN">Upload Files</td>

{% else %}

<td style="color:Yellow"> Key Not
Generated</td>

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 46

{% endif %}

</tr>

{% endfor %}

</table>

</p>

</div>

</div>

</div>

{% endblock %}

{% load static %}

{% block contents %}

<aside id="qbootstrap-hero">

<div class="flexslider">

<ul class="slides">

<li style="background-image: url({%static
'images/cldadmin.webp'%});">

<div
class="overlay"
></div>
<div
class="containe
r">

<div
class="row">

<div class="col-md- t
e
x

c t
e -
n
t

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 47

e
r
sl
i
d
e
r-
t
e
x
t"
>

<div class="sli
<h2>Cloud Server Login here</h2>

<form action="{%url 'cloudlogincheck'%}"
method="POST" class="contactform">

{% csrf_token %}

<div class="form-group">

<label for="name"
class="sronly">Cloud Name</label>

<input type="text"
name="name" style="background-color : #d1d1d1;" class="form-control"

id="name" placeholder="Enter Login Name">

</div>

<div class="form-group">

<label for="email"
class="sronly">Email</label>

Cloudlogin.html

<input type="password" name="password" style="background-
color : #d1d1d1;" class="form-control" id="email" placeholder="Enter
Password ">

</div>

<div class="form-group">

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 48

<input type="submit" id="btn-
submit"

class="btn btn-primary btn-send-message btn-md" value="Login">
</div>

</form>

</div>

</div>

</div>

</div>

</div>

</aside> This is the Index page {% endblock %}

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 49

5. SCREENSHOTS

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 50

Index page

5. SCREENSHOTS

Fig no: 5.1 Index page

Fig no: 5.2 user login

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 51

Fig no: 5.3 User register

Fig no: 5.4 Admin login

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 52

Fig no: 5.5 Admin home page

Fig no: 5.6 user app creation

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 53

Fig no: 5.7 Django rest

Fig no:5.8 User app check

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 54

Fig no: 5.9 Cloud login

Fig no: 5.10 Cloud approve app

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 55

Fig no: 5.11 User Uploaded file

Fig no:5.12 Edit File

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 56

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 57

6. TESTING

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 58

6. TESTING

6.1 INTRODUCTION TO TESTING

The purpose of testing is to discover errors. Testing is the process of trying

to discover very conceivable fault or weakness in a work product. It provides a

way to check the functionality of components, sub-assemblies, assemblies and/or a

finished product. It is the process of exercising software with the intent of

ensuring thatthe Software system meets its requirements and user expectations and

does not fail in an unacceptable manner. There are various types of test. Each test

type addresses a specific testing requirement.

6.2 TYPES OF TESTING
6.2.1 UNIT TESTING

Unit testing involves the design of test cases that validate that the

internal program logic is functioning properly, and that program inputs

produce valid outputs. All decision branches and internal code flow should be

validated. It is the testing of individual software units of the application .it is

done after the completion of an individual unit before integration. This is a

structural testing, that relies on knowledge of its construction and is invasive.

Unit tests perform basic tests at component level and test a specific business

process, application, and/or system configuration. Unit tests ensure that each

unique path of a business process performs accurately to the documented

specifications and contains clearly defined inputs and expected results.

6.2.2 INTEGRATION TESTING

Integration tests are designed to test integrated software components to

determine if they actually run as one program. Testing is event driven and is

more concerned with the basic outcome of screens or fields. Integration tests

demonstrate that although the components were individually satisfaction, as

shown by successfully unit testing, the combination of components is correct

and consistent. Integration testing is specifically aimed at exposing the

problems that arise from the combination of components

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 59

6.2.3 FUNCTIONAL TESTING

Functional tests provide systematic demonstrations that functions tested are

available as specified by the business and technical requirements, system

documentation, and user manuals.

Functional testing is centered on the following items:

• Valid Input : identified classes of valid input must be accepted.

• Invalid Input : identified classes of invalid input must be rejected.

• Functions : identified functions must be exercised.

• Output : identified classes of application outputs must be exercised.

• Systems/Procedures: interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements,

key functions, or special test cases. In addition, systematic coverage pertaining to

identify Business process flows; data fields, predefined processes.

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 60

6.3 TESTCASES

S.no Test Case Excepted Result Result Remarks(IF Fails)

1 USER
REGISTERED

If USER
registration
successfully
.

Pass If USER is
registered.

not

2 USER LOGIN

If USER name and
password is correct
then it will
getting valid page.

Pass
If USER name or
password is not
correct.

3 ADMIN USER rights will
be
accepted here.

Pass If USER are
registered.

not

4 USER upload files Choose or select
USER files Pass

If USER is not
select or SEND

MESSAGES

5 cloud
USER app rights
will be accepted
here.

Pass If USER app are
not registered.

6 user User can edit user
uploaded file Pass If file is

available.
not

7
user User can delete

user uploaded file Pass If file is
available.

not

8 user
User can
download user
uploaded file

Pass If file is
available.

not

9 user User can upload
user uploaded file Pass If file is

available.
not

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 61

7. CONCLUSION

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 62

7. CONCLUSION

In this paper, we have presented an approach and associated tool for monitoring

security in cloud. We have relied on the model-driven approach to design APIs that exhibit

REST interface features. The cloud monitors, generated from the models, enable an

automated contract-based verification of correctness of functional and security requirements,

which are implemented by a private cloud infrastructure. The proposed semi-automated

approach aimed at helping the cloud developers and security experts to identify the security

loopholes in the implementation by relying on modelling rather than manual code inspection

or testing. It helps to spot the errors that might be exploited in data breaches or privilege

escalation attacks. Since open source cloud frameworks usually undergo frequent changes,

the automated nature of our approach allows the developers to relatively easily check whether

functional and security requirements have been preserved in new releases.

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 63

8. REFERENCES

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 64

9. JOURNAL

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 65

Generating Cloud Monitors FromModels To
Secure Clouds

Dr. Madhukar G1, Mounika D2, Sai Kiran S3, Sai Kumar Goud M4

1Assistant Professor, Dept. of Computer Science and Engineering, CMR Technical Campus, India
2,3,4B. Tech Student, Dept. of Computer Science and Engineering, CMR Technical Campus, India

--*****************--

ABSTRACT
Our health care provider is also moving from paper records to electronic health records (EHRs) or could also
be using EHRs already. EHRs permit providers to use information more effectively to enhance the
standard and potency of your care, however EHRs won't modify the privacy protections or security safeguards that
apply to your health info. This project focuses on developing secure cloud framework for evolving and
accessing trustworthy computing services altogether levels of public cloud deployment model. Thus,
eliminates each internal and external security threats. These ends up in achieving data confidentiality, data
integrity, authentication and authorization, eliminating each active and passive attacks from cloud network
surroundings. To develop a secure cloud framework for accessing sure computing and storage
services altogether levels of public cloud preparation model.

Keywords: Cloud framework, Data security, Authentication, authorization, and data confidentiality.

I. INTRODUCTION
With the proliferation of data, it is a heavy burden for users to store huge amounts of data locally.
Therefore, more and more organizations and individuals want to store their data in the cloud.
However, data stored in the cloud can be corrupted or lost due to inevitable software failures,
hardware failures, and human error in the cloud. Many remote data integrity check schemes have
been proposed to ensure that data is stored correctly in the cloud. For remote data integrity
verification schemes, the owner of data must first generate a signature for the block of data before
uploading it to the cloud. These signatures are used to prove that the cloud owns these blocks of data
during the integrity check phase. The data owner then uploads these data blocks to the cloud with
their corresponding signatures.

Data stored in the cloud is often shared among multiple users of many cloud storage applications
such as Google Drive, Dropbox, and iCloud. Data sharing as one of the most common features of
cloud storage allows many users to share their data with others. However, this shared data stored in
the cloud may contain sensitive information. For example, an Electronic Health Record stored and
shared in the cloud typically contains patient sensitive information (patient name, phone number, ID
number, etc.) and hospital sensitive information (hospital name, etc.).

If these EHRs are uploaded directly to the cloud and shared for research purposes, the patient and
hospital sensitive information will inevitably be exposed to the cloud and researchers. It is also
needed to ensure EHR integrity due to human error in the cloud or software / hardware failures.

Therefore, it is important to perform a remote dataintegrity check, provided that the sensitive
information in the shared data is protected.

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 66

A potential way to solve this problem is to encrypt the entire shared file before sending it to the cloud,
then generate the signatures used to verify the integrity of the encrypted file, and finally. The
corresponding signatures of to this encrypted file and its cloud. This method allows only the data
owner to decrypt this file, thus hiding sensitive information. However, the entire shared file will not
be available to other users.

For example, encrypting the EHR of a patient with an infectious disease can protect the privacy of the
patient and the hospital, but these encrypted EHRs cannot be effectively used by researchers.
Distributing the decryption key to researchers seems to be a possible solution to the above problem.
However, this method cannot be applied in real-world scenarios for the following reasons: First, the
distribution of decryption keys requires a secure channel, which can be difficult to achieve. Moreover,
when users upload their EHRs to the cloud, it seems very difficult to know which researchers will use
their EHRs soon.

As a result, encrypting the entire shared file to hide sensitive information is impractical. As a result,
figuring out how to do data exchange with sensitive information hidden in remote data integrity
audits is crucial. Unfortunately, past studies have not investigated this issue.

II. LITERATURE REVIEW
A.Attribute-based Encryption

In a potential cryptographic primitive that increases the flexibility of access control schemes greatly.
The computational complexities of ABE key-issuing and decryption are becoming too high due to the
great expressiveness of ABE Policies. Despite the fact that existing Outsourced ABE systems can
offload some expensive computational activities to a third party, the verifiability of the third-party
results has yet to be addressed. To address the problem, we present a novel Safe Outsourced ABE
system that allows for secure outsourced key issuance and decryption.

All access policy and attribute related operations in the key-issuing process or decryption are
offloaded to a Key Generation Service Provider (KGSP) and a Decryption Service Provider (DSP),
respectively, leaving only a constant number of simple operations for the attribute authority and
eligible users to perform locally with our new method. Furthermore, it proposes an outsourced ABE
structure for the first time, which delivers and directs the user back to the login action. To access the
webpage, a registered user must first login. Validations are applied to all textboxes to ensure that the
webpage functions properly.

Each of the recommended solutions has been proven secure and practical, just as the information in
each textbox is required.

B.Patient Controlled Encryption
This examines the challenge of maintaining patient privacy with an electronic health record system.
We argue that the security of such systems needs to be enforced through both encryption and access
control. In addition, it advocates an approach that allows patients to generate and store encryption keys,
protecting their privacy even if the host data center is compromised. The standard argument for such an
approach is that encryption compromises the functionality of the system.

However, it does show that patients can share partial access with others and build an efficient system to
search their records. It formalizes the requirements of a patient-driven cryptographic scheme and

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 67

performs multiple instantiations based on existing cryptographic primitives and protocols, each with a
different set of properties.

C.Cross-Domain data sharing
Indistributed electronic health record system, Collaboration between organizations or domains takes
place on an electronic health record (EHR) system from time to time for the need and quality of patient
care. Careful design of the delegation mechanism is required as a component of cross-domain
collaboration. Collaboration inevitably involves exchanging and sharing relevant patient data, which is
considered to be very private and sensitive. The delegation mechanism grants permission to
cooperating partners and limits access.

Patients will not embrace the EHR system until correct use and disclosure of their health data is
ensured, which is difficult to achieve without cross-domain authentication and fine-grained access
control. Furthermore, the granted rights should be revocable at any time during the collaboration. In
this research, we present a secure EHR system based on cryptographic constructions that allows for
secure sharing of critical patient data while preserving patient data privacy during collaboration. Our
EHR system also includes advanced mechanisms for fine-grained access control and on-demand
revocation, which are upgrades to the delegation mechanism's basic access control and the basic
revocation mechanism's basic revocation, respectively. The recommended EHR system is shown to
realize specific goals within the cross-domain delegation situation of interest.

D.Privacy-Preserving multi-Keyword Ranked
Data owners are driven to outsource their complicated data management systems from local locations
to the commercial public cloud due to the development of cloud computing, which provides greater
flexibility and cost savings. However, to ensure data protection, sensitive data must be encrypted first.
It has been outsourced and the use of traditional plaintex keyword search-based data has been
discontinued.

Therefore, it is of utmost importance to enable encrypted search services for cloud data. Considering
the largenumber of data consumers and documents in the cloud, it's vital to allow various keywords in
the search request and return documents in the order associated with those keywords. Related work on
searchable encryption focuses on a single keyword or Boolean search.

Keyword searches are rare, and the results are rarely sorted. This article is that the initial to outline and
solve the tough drawback of privacy-preserving multi-keyword ranked search over encrypted
information (MRSE). For such a safe cloud data consumption system, we create a set of stringent
privacy standards. To capture the relevance of data documents to the search query, we use the efficient
similarity measure of "coordinate matching," i.e., as many matches as possible, among several multi-
keyword semantics.

We also use "Internal Product Similarity" to quantitatively assess such a measure of similarity. We
provide a fundamental notion for the MRSE based on safe inner product computation, followed by two
greatly improved MRSE schemes to meet various strict privacy criteria in two separate threat
scenarios.We enhance these two techniques to allow more search semantics in order to improve the
data search service's search experience. A detailed analysis is provided to study the privacy and
efficiency assurance of the proposed system. Experiments on a real-world data set reveal that the
proposed approaches do actually reduce compute and transmission overhead.

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 68

.

III. PROPOSED WORK
The proposed system is based on the secure hash algorithm and Advanced Encryption standard which
is very popular in transmitting of messages in a secured way the data flow diagram is shown in the fig
1.1. The process is divided into four modules which employs various methods.

Fig 1.1 Data flow diagram

A. Login Module
When a visitor visits a website for the first time, this is the first activity that appears. In order to get

onto the website, the user must supply a valid phone number and a password, which the user creates
upon registering. If the user's information matches the data in the database table, the user is successful
in logging into the website; otherwise, a notification of login failure is displayed, and the user must re-
enter accurate information. Links to registration activities for new user registration are also provided.

B. RegistrationModule
New users who wish to access the website must first register before logging in. Click the Register
button for your login activity to open the registration activity. New users register by entering their
name, password, and contact number. The user must re-enter and confirm the password in the Confirm
Password text box. When the user fills in all the text fields and clicks the Register button, the data is
transferred to the database and the user is redirected to login activity again. Registered users must be
logged into access the website. Validation is applied to all text fields to ensure that your website works
properly. Like the information in each text field, the name, contact, password, or password
confirmation text fields do not need to be blank during registration. If such text fields are empty, the
app will print a message containing the information that should be included in each text field.

In addition, the data in the Password and Confirm Password fields must match for successful
registration. Another validation is that the contact number must be a valid 10-digit number. If any of
these validations are broken, registration will fail, and the user will have to re-register. When one of
the fields on the page is left blank, a message will appear. If all the above information is correct, the
user will be led to the login activity, which will allow them to log into the webpage.

C. Creation of Storage

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 69

After the data is uploaded to the cloud, the data owner has no control over the data. In this module, the
original data is encoded into two different values. As shown in Figure 1.2, the data in each slice can be
encrypted using various encryption algorithms and encryption keys before being stored in the cloud.

FIG 1.2WORKFLOW OF A FILE UPLOADING IN CLOUD

D. Data Protection
This module uses techniques to store data properly and securely to avoid intruders and data attacks

while reducing the cost and time required to store encrypted data in cloud storage increase.

IV.SYSTEM ARCHITECTURE
In the figure 1.3, the data owner sends the data which will be encrypted as cipher text from plain text. Further the
data is divided into two slices as slice 1 and slice 2. Then the slice 2 is encrypted again and adds the slice 1. Finally,
these values are stored in the cloud storage. In the receiver side it receives the data from the cloud as a cipher text
and it decrypts the slice 1 and encrypted slice 2 data. Then the value of slice 2 is again decrypted to find the divided
slices for the receiver. Then these values are added to find the encrypted text i.e., the original data.

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 70

FIG 1.3 SYSTEMARCHITECTURE

V.METHODOLOGY
A. SHA Algorithm

The Secure Hash Algorithms are a collection of cryptographic hash functions released by the National
Institute of Standards and Technology (NIST) as a Federal Information Processing Standard (FIPS) in
the United States. They include:

 SHA-0: A retronym for the original 160-bit hash function, which was published in 1993 under the name "SHA." It was
superseded with the significantly altered version SHA-1 shortly after publication due to an unknown "major
weakness."

 SHA-1: A 160-bit hash function that resembles the MD5 algorithm from the past. The National Security Agency
(NSA) created this as part of the Digital Signature Algorithm. After SHA-1's cryptographic flaws were found, the
standard was no longer authorized for most cryptographic applications after 2010.

 SHA-2:SHA-256 and SHA-512 are two hash methods that are similar but have differing block sizes. The word size of
SHA-256 and SHA-512 is different; SHA-256 utilizes 32-bit bits and SHA-512 uses 64-bit words. Each standard also
has shortened versions called as SHA-224, SHA-384, SHA-512/224, and SHA-512/256. The National Security
Agency (NSA) was also responsible for these.

 SHA-3: After a public competition among non-NSA designers in 2012, a hash function formerly known as Keccak was
chosen. It uses the same hash lengths as SHA-2 and has a different internal structure than the rest of the SHA family.

NIST has updated the Draft FIPS Publication 202, SHA3 Standards separately from the Secure Hash
Standard (SHS).

B. AES Algorithm
The Advanced Encryption Standard (AES) could be a specification for the secret writing of electronic
information established by the NIST in 2001. AES is wide used these days as it could be a abundant

https://en.wikipedia.org/wiki/SHA-0
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-3

GENERATING CLOUDMONITORS FROMMODELS TO SECURE CLOUD

CMRTC 71

stronger than DES and triple DES despite being tougher to implement. AES could be a block cipher.
The key size are often 128/192/256 bits. Encrypts information in blocks of 128 bits each, meaning it
takes 128 bits as input and outputs a 128-bit encrypted ciphertext.

AES depends on substitution-permutation network principle which implies it's performed employing
a series of linked operations that involves exchange and shuffling input data.

AES performs operations on bytes of data instead of in bits. Since the block size is 128 bits, encryption
Processes 128-bit (or 16 bytes) input data at the same time.

The number of rounds depends on the key length as follows 128 bit key – 10 rounds, 192 bit key – 12 rounds and
256 bit key – 14 rounds.Refer Fig1.4.

VI.CONCLUSION AND FUTURE SCOPE
A. Conclusion

These outcomes result in data confidentiality, data integrity, authentication, and authorization being
achieved, as well as the elimination of both active and passive assaults in the cloud network
environment. Develop a secure cloud framework for gaining access to trustworthy compute and storage
services throughout the public cloud deployment paradigm at all levels.

B. Future Scope
To deliver trustworthy computing and storage services, it achieves high levels of security. Data
integrity, confidentiality, authentication, and authorization are all provided. Both internal and external
security dangers are eliminated. In a cloud network context, it protects against both active and passive
assaults. Different levels of security are achieved in the cloud framework.

ACKNOWLEDGMENT
We thank CMR Technical Campus for supporting this paper titled with "Generating Cloud Monitors
From Models To Secure Clouds ", which provided good facilities and support to accomplish our work.
Sincerely thank to our Chairman, Director, Deans, Guide and Faculty Members for giving valuable
suggestions and guidance in every aspect of our work.

REFERENCES
[1] C. Chu, S. Chow, W. Tzeng, J. Zhou, R. Deng, “Key-aggregate cryptosystem for scalable data sharing in cloud

storage,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 2, pp.468-477, Feb. 2014.

[2] Y. Tong, J. Sun, S. Chow, P. Li, “Cloud-assisted mobile-access of health data with privacy and auditability”, IEEE

Journal of Biomedical and Health Informatics, vol. 18, no. 2, Mar. 2014.

[3] Z. Pervez, A. Khattak, S. Lee, Y. Lee, “SAPDS: Self-healing attribute-based privacy aware data sharing in cloud”,

The Journal of Supercomputing, vol. 62, no. 1, pp. 431´lC460, Oct. 2012.

[4] C. Fan, V. Huang, H. Rung, “Arbitrary-state attribute-based encryption with dynamic membership”, IEEE

Transactions on Computers, vol. 63, no. 8, pp. 1951-1961, Apr. 2013.

[5] X. Chen, J. Li, J. Weng, J. Ma, W. Lou, “Verifiable computation over large database with incremental updates” IEEE

Transactions on Computers, vol. 65, no. 10: 3184-3195, Oct.2016. [11] C. Gao, Q. Cheng, X. Li, S. Xi

[6] N. Cao, C. Wang, M. Li, K. Ren, W. Lou, “Privacy-preserving multi key word ranked search over encrypted cloud

data”, IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 1, pp. 222-233, Nov. 2013.

[7] S. Seo, M. Nabeel, X. Ding, E. Bertino, “An efficient certificate less encryption for secure data sharing in public

clouds”, IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 9, pp. 2107-2119, Sept. 2014.

[8] L.A. Dunning, R. Kresman, “Privacy preserving data sharing with anonymous ID assignment”, IEEE Transactions on

Information Forensics and Security, vol. 8, no. 2, pp.402-413, Feb. 2013.

[9] X. Chen, X. Huang, J. Li, J. Ma, D. Wong, W. Lou, “New algorithms for secure outsourcing of large-scale systems of

linear equations”, IEEE Transactions on Information and Forensics Security, vol. 10, no. 1, pp. 69- 78, Jan. 2015.

[10] C. Fan, V. Huang, H. Rung, “Arbitrary-state attribute-based encryption with dynamic membership”,

IEEE Transactions on Computers, vol. 63, no. 8, pp. 1951-1961, Apr. 2013.

	By D.MOUNIKA(18C21A0507) S.SAI KIRAN (187R5A0512)
	DR.G.MADHUKAR
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CM
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	INTERNAL GUIDEDIRECTOR
	D.Mounika (18C21A0507)

	1.INTRODUCTION
	1.INTRODUCTION
	1.1PROJECT SCOPE
	1.2PROJECT PURPOSE
	1.3PROJECT FEATURES

	2. SYSTEM ANALYSIS
	2.SYSTEM ANALYSIS
	SYSTEM ANALYSIS
	2.1PROBLEM DEFINITION
	2.2EXISTING SYSTEM
	2.2.1LIMITATIONS OF EXISTING SYSTEM

	2.3PROPOSED SYSTEM
	2.3.1ADVANTAGES OF THE PROPOSED SYSTEM

	2.4 FEASIBILITY STUDY
	2.4.1ECONOMIC FEASIBILITY
	2.4.2TECHNICAL FEASIBILITY
	2.4.3BEHAVIOURAL FEASIBILITY

	2.5HARDWARE & SOFTWARE REQUIREMENTS
	2.5.1HARDWARE REQUIREMENTS:
	2.5.2SOFTWARE REQUIREMENTS:

	3.ARCHITECTURE
	3.ARCHITECTURE
	3.1PROJECT ARCHITECTURE
	3.2MODULE DESCRIPTION User
	Cloud
	Admin
	3.3DATA FLOW DIAGRAM
	3.4USE CASE DIAGRAM:
	3.5CLASS DIAGRAM:
	3.6SEQUENCE DIAGRAM:
	3.4 ACTIVITY DIAGRAM:

	4.IMPLEMENTATION
	4.IMPLEMENTATION
	4.1 SAMPLE CODE
	Cloud Side views.py
	Cloud Side models.py
	forms.py
	admin.py
	clouduploadfiles.html
	Cloudbase.html
	Useruploadfile.html
	Cloudlogin.html

	5.SCREENSHOTS
	Index page

	6.TESTING
	6.TESTING
	6.1INTRODUCTION TO TESTING
	6.2TYPES OF TESTING
	6.2.1UNIT TESTING
	6.2.2INTEGRATION TESTING
	6.2.3FUNCTIONAL TESTING

	6.3TESTCASES

	8.REFERENCES
	Dr. Madhukar G1, Mounika D2, Sai Kiran S3, Sai Kum
	ABSTRACT
	I.INTRODUCTION
	II.LITERATURE REVIEW
	C.Cross-Domain data sharing
	D.Privacy-Preserving multi-Keyword Ranked

	III.PROPOSED WORK
	A.Login Module
	B.Registration Module
	C.Creation of Storage
	D.Data Protection

	IV.SYSTEM ARCHITECTURE
	V.METHODOLOGY
	A.SHA Algorithm
	B.AES Algorithm

	VI.CONCLUSION AND FUTURE SCOPE
	A.Conclusion
	B.Future Scope

	ACKNOWLEDGMENT
	REFERENCES

